
Unconventional superconductivity with a radial-node gap in quasi-one-dimensional metals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys.: Condens. Matter 14 L655

(http://iopscience.iop.org/0953-8984/14/39/103)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 18/05/2010 at 15:02

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/14/39
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 14 (2002) L655–L661 PII: S0953-8984(02)40159-2

LETTER TO THE EDITOR

Unconventional superconductivity with a radial-node
gap in quasi-one-dimensional metals

Y Fuseya1, Y Onishi2, H Kohno1 and K Miyake1

1 Department of Physical Science, Graduate School of Engineering Science, Osaka University,
Toyonaka, Osaka 560-8531, Japan
2 Computer and Communication Media Research, NEC Corporation, Kawasaki,
Kanagawa 216-8555, Japan

E-mail: fuseya@eagle.mp.es.osaka-u.ac.jp

Received 2 August 2002
Published 19 September 2002
Online at stacks.iop.org/JPhysCM/14/L655

Abstract
It is shown that a new type of superconductivity is possible in one-dimensional
(1D) and quasi-one-dimensional (Q1D) metals where the pairing interaction
is mediated by both spin and charge fluctuations. The gap function inevitably
changes sign in the radial direction near the Fermi surface; it vanishes at the
Fermi points for 1D, and for Q1D it has line nodes on the Fermi surface as in
usual anisotropic pairings. The transition temperature Tc is generally higher for
the singlet pairing than for the triplet, but only by a few times. This implies that
Tc for the triplet pairing can exceed that of the singlet under a moderately large
Zeeman magnetic field, i.e., field-induced triplet pairing. This feature seems
to explain the anomalous behaviours of Hc2 and the Knight shift observed in
(TMTSF)2PF6.

1. Introduction

The systematics of the superconducting mechanism in strongly correlated electron systems may
be one of the most important subjects in condensed matter physics. In superconductors adjacent
to the antiferromagnetic states, it is generally believed that anisotropic spin-singlet pairing (SP)
is realized due to the effects of antiferromagnetic spin fluctuations [1–3]. The superconducting
phase of the quasi-one-dimensional (Q1D) conductor (TMTSF)2PF6 is located close to the
spin density wave (SDW) phase [4], and it is naturally assumed that SP is realized also in
(TMTSF)2PF6. However, recent experimental data on (TMTSF)2PF6, such as the unsaturated
behaviour of Hc2 in the low-temperature region [5] and the absence of the Knight shift
suppression below the transition temperature Tc [6], suggest that spin-triplet pairing (TP)
is realized in such Q1D metals under magnetic fields. Recently, Kuroki et al [7] tackled
this system with the FLEX approximation and observed that SP is stabilized compared to

0953-8984/02/390655+07$30.00 © 2002 IOP Publishing Ltd Printed in the UK L655

stacks.iop.org/JPhysCM/14/L655


L656 Letter to the Editor

TP. They then proposed, on phenomenological grounds, that a coexistence of charge and spin
fluctuations, not included in the FLEX approximation, may stabilize TP.

One of the characteristic features of the one-dimensional (1D) interacting fermion system
is that the charge and spin fluctuations show the same power-law singularity at wavenumber
2kF (kF being the Fermi wavenumber) [8]. Therefore, the two fluctuation types are expected
to contribute to the pairing interaction with comparable weight [9].

The purpose of this letter is to explain the apparently puzzling behaviour of (TMTSF)2PF6

by taking into account these 1D characteristics of spin and charge fluctuations. As shown below,
such pairing interaction leads to a novel type of superconducting gap, which changes sign in the
radial direction. The TP can be competitive with the SP and will be stabilized under moderately
large magnetic fields. This feature seems to simulate well the existing experimental data on
(TMTSF)2PF6 [5, 6].

We first study the purely 1D system to gain a clear picture to the origin of this novel radial-
node gap. It is known that in purely 1D metals the fluctuations destroy superconductivity. We
shall implicitly assume that a interchain hopping t⊥ necessary for the stabilization of the su-
perconductivity which, however does not introduce large corrections to the main effect. Next,
we introduce t⊥ and discuss the competition between the SDW ordering and the present super-
conductivity ordering. The effects of the unitary impurities are also studied for Q1D systems.

2. Purely one-dimensional case

We consider 1D and Q1D systems described by the Hubbard Hamiltonian

H =
∑
k,σ

ξkc†
kσ ckσ + U

∑
i,�

ni�,↑ni�,↓, (1)

where c†
kσ is the electron creation operator of wavevector k = (k, k⊥) and spin σ , ni�,σ is the

number of spin-σ electrons at site i on the �th chain, and U > 0. The kinetic energy is given
by

ξk = −2t cos k − 2t⊥ cos k⊥ − µ (t � t⊥), (2)

where k (k⊥) and t (t⊥) are the wavenumber and the transfer integral, respectively, along
(perpendicular to) the conducting chains. The lattice constants are taken as unity for both
directions.

In purely 1D systems (t⊥ = 0), the charge (χc) and spin (χs) susceptibilities show power-
law singularities ∼|q ± 2kF|−α with the same exponent α [8]. For convenience, we model
their q-dependence by

χ1D(q) =
(
tan kF

2

)α

4π tα sin q
2

{∣∣∣∣tan
q − 2kF

4

∣∣∣∣
−α

− (q → −q)

}
(3)

and write it as χc,s(q) = (2vF Kc,s/vc,s)χ1D(q). Here vF = 2t sin kF is the Fermi velocity
and vc (vs) is the charge (spin) velocity. Equation (3) has the same singularity at q = ±2kF,
has a fixed (α-independent) value of 1/πvF at q = 0, and reduces to the susceptibility of
non-interacting electrons (with logarithmic singularity) in the limit α → 0. This form is not
unique, but other choices do not affect the main results of this letter. The exponent α is known
to lie in a range 0 < α < 0.5 for repulsive interaction U > 0.

The pairing interaction generally takes the form Vk,k′ = Ik,k′ +(�σ · �σ ′)Jk,k′ , where I and J
arise from processes exchanging charge and spin fluctuations, respectively, and (�σ · �σ ′) = −3
for SP and 1 for TP [10, 11]. We adopt the model interactions Ik,k′ = Ũ − (I 2

c /4)χc(|k − k ′|)
and Jk,k′ = (I 2

s /4)χs(|k − k ′|), where Ũ simulates the short-range irreducible repulsion and



Letter to the Editor L657

Table 1. Transition temperatures T s
c (T t

c ) for singlet (triplet) pairing and their ratio T s
c /T t

c .

α = 0.2 α = 0.3

T s
c /t 4.09 × 10−4 5.95 × 10−3

T t
c /t 6.60 × 10−5 2.45 × 10−3

T s
c /T t

c ∼6.2 ∼2.4

Ic (Is) is the constant of coupling of quasiparticles to the charge (spin) fluctuation modes. The
pairing interaction is then written as

Vk,k′ =
{

Ũ
0

}
+ 1

2

{
3as − ac

−as − ac

}
χ1D(kx − k ′

x) (4)

for SP (upper) and TP (lower), with ac,s = I 2
c,s Kc,svF/vc,s.

We determine the transition temperature Tc and the gap function �k from the linearized
gap equation

�k = −
∑
k′

Vk,k′
�k′

2ξk′
tanh

ξk′

2kBTc
. (5)

In order to search in the low-temperature region, Tc 	 t , we need to divide the k-space
into finer meshes around the Fermi points3. We performed calculations for a wide variety
of parameter sets and obtained qualitatively the same results. In the following, we show the
results for Ũ = 3.0t , I 2

c KcvF/vc = 0.75Ũ 2, I 2
s KsvF/vs = Ũ 2, and kF = π/4 (quarter-filling).

The transition temperature Tc is finite for both SP and TP. It is far below 10−6t for α = 0,
but increases appreciably to 10−(2−3)t as α is increased to 0.3 (see table 1). It is remarked that,
while Tc for TP (T t

c ) is generally lower than Tc for SP (T s
c ), they are comparable in magnitude,

i.e., the ratio RTc ≡ T s
c /T t

c is of the order of unity. This ratio, RTc , becomes even smaller for
larger α, as seen in table 1; in other words, intrachain interaction makes the difference between
T s

c and T t
c smaller. With such small RTc of the order of unity, T t

c can exceed T s
c under a

moderately large magnetic field along the direction for which the orbital effects are negligible,
since SP is suppressed due to the paramagnetic effect while TP is not. This field-induced
changeover from SP to TP will show itself as an anomalous T -dependence of Hc2. This may
provide an explanation for such anomalous Hc2 as observed in (TMTSF)2PF6 [5]. For this
changeover to occur under moderate magnetic fields (�2 T), it is necessary that the interaction
mediated by charge fluctuations is comparable to that mediated by spin fluctuations. It is
remarked that the former character cannot be taken into account by the FLEX approximation.

The gap function �k is sharply peaked on both sides of the Fermi point and quickly
approaches zero away from it. The behaviour near the Fermi point kF = π/4 is shown in
figure 1. The most impressive feature is that it changes sign across the Fermi points, �kF = 0.
This type of gap, a radial-node gap, whose variation occurs in the radial direction, is quite
different from the conventional anisotropic gap whose sign changes in the angular direction.
The peak position depends on temperature,and the distance from the Fermi point is proportional
to the transition temperature. This is the only reason that the peak for TP with lower Tc is
closer to the Fermi point compared to that for SP.

The peculiar k-dependence of �k may be understood as follows. With a conventional gap
function, which does not change sign across the Fermi point, the pairing potential Vk,k′�k�k′

is positive for a dominant momentum transfer of ±2kF (e.g., k = −kF and k ′ = kF). This
means that Vk,k′ acts as a repulsive interaction for both SP and TP (see figure 2(a)). On the

3 The size of the mesh is ∼10−10 near the Fermi points, and 3000 points are taken in the region 0 < k < π .
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Figure 1. The gap function at the transition temperature in the 1D model. The solid (dashed) curve
represents the gap for singlet (triplet) pairing. The vertical dotted line indicates the Fermi point
kF = π/4.

kF-kF
kF-kF kxkx

2kF
2kF -2kF

-2kF

∆(k) ∆(k)
(a) (b)

Figure 2. An illustration of the 2kF pair scattering processes via 1D fluctuations χ1D and the
relation with the gap function �(k) (even parity is assumed). (a) For the conventional gap, the sign
of �(k) does not change through the 2kF scattering and χ1D acts as a ‘repulsive’ interaction. (b) For
the radial-node gap, �(k) changes sign through the 2kF scattering and χ1D(q ∼ 2kF) mediates an
‘attractive’ interaction. The same argument applies to the odd-parity TP also.

other hand, with the radial-node gap, Vk,k′�k�k′ can be negative and Vk,k′ acts as an attractive
interaction (see figure 2(b)). Due to this sign change, the present gap does not feel the ‘on-site’
repulsion Ũ . In fact, we observed that Tc does not depend on the value of Ũ as long as Ũ > 0.
This type of pairing has not been considered in the conventional renormalization group theory
(g-ology) of 1D Fermi gas [8]. Work in this direction is in progress [13].

3. Quasi-one-dimensional case

So far we have considered purely 1D systems. The problem there is that the SDW instability
is actually stronger than the pairing instability examined, and the SDW phase, rather than the
present superconducting state, will be stabilized once the three-dimensionality of the system
is assumed. We now switch on the interchain hopping t⊥ and show that the SDW is quickly
suppressed, whereas the essential character of the present superconductivity remains valid.
We limit ourselves to finite but very small values for t⊥ and assume that the q⊥-dependence is
negligible in the pairing interaction—that is, that the pairing interaction is mediated only by
intrachain fluctuations. The gap function thus depends only on k (not on k⊥).
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Figure 3. The dependence of T s
c and T t

c on η. The SDW ordering is destroyed at ηSDW satisfying
χchain(2kF, ηSDW) = g−1

⊥ . Here, we set g⊥/t = 2.34 × 10−1.

(This figure is in colour only in the electronic version)

The effect of t⊥ will be to destroy the perfect nesting of the Fermi surface and thereby
suppress the 2kF singularity of χ1D [12]. We model this suppression as∣∣∣∣tan

(q ± 2kF)

4

∣∣∣∣
−α

→
∣∣∣∣tan2 (q ± 2kF)

4
+ η2

∣∣∣∣
−α/2

(6)

by introducing a smearing factor η. Even a small value of η considerably suppresses the
singularity; χ1D(2kF, η) � 17.9/t for η = 10−6 and 4.28/t for η = 10−4, which leads to a
strong suppression of the SDW ordering. In figure 3, the phase boundary of SDW is determined
by χ−1

s,Q1D ≡ χ−1
s,1D(2kF, η) − g⊥ = 0, with the small interchain interaction g⊥ 	 t . On the

other hand, for the present superconductivity, the change of Tc (figure 3) is moderate and
the superconducting ground state persists in a relatively wide region after the SDW phase
is destroyed. This feature is consistent with the pressure dependence of the ground state of
(TMTSF)2PF6 [4]. Below, we take t⊥ = 0.03t (other parameters being the same as before)
and see how the 1D pairing state is modified by t⊥.

The gap function, shown in figure 4(a), has similar k-dependence to that of the 1D case for
both SP and TP. The positions of the peaks, however, are fixed at the k-values of the extremum
points of the ‘Fermi line’, in contrast to the 1D case where they were T -dependent. This feature
seems robust against variations of T , η, or t⊥ as long as t⊥ 	 t . Since the Fermi surface is
slightly warped (due to t⊥) and the nodes of the gap are independent of k⊥, the gap inevitably
has four nodes on the Fermi surface; in this case nodes are located at (±π/4,±π/2) (see
figure 4(b)). A similar gap function was obtained by the FLEX approximation in [7], although
the value of Tc were not mentioned there. In [7] attention was paid only to the sign change of
the gap function in the angular direction, not to that in the radial direction as proposed here.
Topologically the same gaps were also used in a study of quasiparticle density of states (DOS)
near the surface [15].

4. Effect of unitary impurities

In this section, we study the effect of impurities on DOS in the superconducting state. We
first determine the magnitude, �0(T ), of the gap below Tc. For this we use the gap equation
as an approximation assuming that the gap has the same k-dependence as the one obtained at
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Figure 4. (a) The gap function at the transition temperature for the Q1D case. The solid (dashed)
curve represents the gap for singlet (triplet) pairing. (b) The sign of the gap function on the Fermi
surface for Q1D systems. The solid (dashed) curve indicates �k > 0 (<0).

0.0 0.5 1.0 1.5 2.0
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 (ω

) /
 N

0
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Figure 5. Quasiparticle DOS Ns(ω)/N0 versus reduced energy ω/�0 in Q1D systems.

Tc. At T = 0, we obtained �0(0) = 1.18 × 10−2t for SP and 2.82 × 10−3t for TP. The ratio
2�0(0)/kBTc is estimated as 4.1 for SP and 3.8 for TP.

We then model the k-dependence of the gap function used above by the form

�k = �0(T )

Z

tanh(k − kF)

(k − kF)2 + a2
(7)

for k > 0. Here, Z is a normalization factor such that �0 gives the maximum value of �k .
For a = 4.25 ×10−2(Z = 11.8), equation (7) reproduces the numerically obtained one (at Tc)
quite well.

With �k thus determined, we have studied the effect of impurities in the unitary limit
following the standard method [15, 16]. In figure 5, we plot Ns(ω)/N0 for the pure system
(solid curve) and that with impurities 
 = 2.5 × 10−4t for different �0(0) at T = 0. Here,

 is the electron damping due to the impurity scattering and is proportional to the impurity
concentration. Without impurities, the DOS is linear in ω at low energy (ω 	 �0(T )) and is
divergent at ω = �0(T ). A small level of impurity produces a finite DOS, Ns(0), at ω = 0 as
in conventional anisotropic superconductors. We see that Ns(0) is approximately proportional
to

√
η ln(2/η) (η ≡ 
/�0(T )) [17], and the relation Ns(0; T = 0) ∼ √

(ln Tc)/Tc holds if 


is assumed to be constant (see figure 5).
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We propose the following scenario to account for the anomalous behaviour of 1/T1

observed in (TMTSF)2PF6 [6]. Under zero magnetic field, SP sets in at T = T s
c . This

SP is relatively strong against impurities due to its higher Tc, so it has a small residual DOS
leading to the T -dependence 1/T1 ∝ T 3 over a rather wide T -region below T s

c . On the other
hand, under moderately large magnetic fields, SP is destroyed by the paramagnetic effect and
TP with lower T t

c will arise instead. This TP state is weak against the impurity scattering, and
may allow a large residual DOS leading to the gapless behaviour as observed in 1/T1.

In conclusion, we have investigated a new type of superconducting state in Q1D metals,
which are mediated by singular spin and charge fluctuations at 2kF, and have discussed the
relevance of this state to the unusual behaviours of (TMTSF)2PF6. The novel gap found in this
letter may have relevance to a wide class of Q1D superconductors.
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